
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5201 1

Database Administrator Roles and Equivalent of

a SQL Server Identity in Oracle

Saeed M Alshahrani

Department of Computer Science, Sacred Heart University, Bridgeport, CT, USA

Abstract: In this paper, many tasks and responsibilities that every database administrator should and must do in order

to get the perfect result for their database. There are similarity between SQL server identity, oracle identities and other

database identities such as MySQL, and Microsoft SQL Server. With the 11g release the tuning advisor’s technology

has been fully automated so that some SQL performance problems can be fixed automatically by the system.

Keywords: Database, SQL, Oracle, Administrators, Roles.

1. INTRODUCTION

There are many tasks and responsibilities that every

database administrator should and must do in order to get

the perfect result for their database. Database

administrator roles include the following: database design,

backup and recovery, security, database performance

monitoring, and other roles. I am going to explain those

roles and why they are important? First, database design,

designing your database will give you as a database

administrator good database quality and performance

because when you are designing the database you are

thinking of saving the user data and how the user is going

to get the data that they asking for. A good and storing

database design will give the user and the application a

useful database. Striping is done on two levels. The first

level is the striping done by the disk arrays such as RAID,

the second level is the striping of data onto separate disk

arrays by DB2 UDB. On the RAID level, we make the

distinction between a strip size 1 and a stripe size. On the

database level, we make the distinction between an extent

size and a prefect size [1]. A good rule of thumb is to

make one stripe size equal to one extent size, so that the

RAID striping matches the database striping. To better

grasp the concepts behind striping, we will work through a

disk layout example. In this example, we take an OLTP

database, and place it on 8 RAID arrays, each RAID array

containing 12 disks.

Second, backup and recovery, this is very important

because if the application fails for any reasons it is the

responsibility of the database administrator to give a copy

of the recent backup that he or she has. Doing backup and

recovery for the database gives the database administrators

the guarantee of having the customers and users data all

the time so they will not lose their users if something

wrong happens to the application.

Model organism system databases (MODs) are a vital tool

for scientific research. They share a common set of tasks:

to collect and curate data from the scientific literature such

as mutations, alleles, genetic and physical maps, and

phenotypes; to integrate this information with the results

of large-scale experiments such as microarray studies,

SNP screens, and protein-interaction studies; to provide

reagent resources such as stocks, genetic constructs, and

clones; and, lastly, to provide a common nomenclature for

gene symbols, anatomic terms, and other elements of the

scientific vocabulary. There is similarity between SQL

server identity, oracle identities and other database

identities such as MySQL, and Microsoft SQL Server [2].

All those databases support the identity of auto increment

and I am going to explain the equivalent of a SQL server

identity in oracle and why many database administrators

use it? The identity of auto-increment can be written in

such different methods depends on which database that

you are working with.

In oracle this identity written as SEQUENCE object which

gives the database developers the ability to do their auto

increment for a particular column easily where SQL server

uses IDINTITY () function to do the same purpose.

II. AUTHORIZATION AND RELATIONAL

DATABASES

-grained access control was first introduced as a part of the

access control system in INGRES by Stonebreaker and

Wong (1974), which was implemented by query

modification technology. The basic idea of query

modification is that before being processed, user queries

are transparently modified to ensure that users can access

only what they are authorized to access (Bertino et al.,

2005; Wang et al., 2007).

Views are used to specify and store access permission for

users. When a user submits a query, DBMS first finds all

views whose attributes include the attributes of the issued

query, and then add the predicates of these views to the

predicates of the original query to form a new modified

query, which will be carried out [4].

FGAC controls the access of users in a relational database

and the access modes include select, insert, update, and

delete. In relational databases, there exist mainly two

approaches to granting privileges to users. One is to

directly assign permissions to users, and the other is to

grant privileges to the roles that users are assigned figure 1.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5201 2

Fig1: Fine-grained access control (FGAC)

III. REFERENCE OBJECT-ORIENTED DATA

MODEL

In this model a class is defined by specifying its name, its

attributes, and the names of its super classes. Multiple

inheritance and the existence of a default class, called

TOP_CLASS, root of an inheritance hierarchy

encompassing the entire database are assumed. An

attribute is defined by specifying its name and its domain.

Classes have both the intentional and extensional meaning

and an object can be instance of only one class. An object,

however, can be member of several classes through the

inheritance hierarchy. Attributes can be single-values or

multi-valued. In defining multi-valued attributes, the

various object-oriented data models use different

constructors such as set, list, tree, array. In the reference

model we will abstract from specific constructors, and we

assume that multi-valued attributes are defined by using a

constructor denoted as set-of. The following definitions

specify a notation for the Reference Model [3].

In most cases, versioned objects are shared among several

users. Mechanisms should be provided so that users

receive consistent and stable versions. Most version

models distinguish between transient and stable versions.

A transient version can be modified or deleted. However,

no versions can be derived from a transient version. A

transient version must first be promoted to a stable version

before new versions can be derived from it. By contrast, a

stable version cannot be modified. However, it can be used

to generate new versions.

n the remainder of this section we describe our basic

framework for database integration. In section 2 we

discuss attribute equivalence and "embedded" attributes,

and we introduce the "locality attribute", a central concept

in our integration methodology. In section 3 we define the

"two-dimensional union" (our basic integration operator),

we show how the "top-down'' distributed database

concepts of fragmentation and allocation can be

introduced into the "bottom-up'' integration context, and

we touch briefly on questions of constraint integration. In

section 4 we describe how to translate global updates in

our approach. Section 5 contains conclusions and

suggestions for future work in this area.

IV. EMBEDDED CALCULATED ATTRIBUTE

For this category, the value of the embedded attribute is

calculated as a function of other attributes. A special case

of this situation was mentioned by Kent in, where the term

"embedded attribute" was used to refer to a situation in

which a character string attribute contained several

properties of independent interest literally embedded

within it as substrings. As another example, suppose we

have a relation which describes individual automobiles in

a database at an automobile production site, and suppose

that the interior color for automobiles produced at this site

is always the same as the exterior color. In this situation,

the designer of the database might feel that it is redundant

to include both exterior color and interior color as

attributes in the relation, leading to the relational scheme.

There are similarities between the concept of embedded

calculated attributes and the concept of functional

dependencies, but there are also important differences. If

there exists a functional dependency X + A, it only means

that the value of the attribute A is a function of the values

of the attributes in X at each point in time. The function

may vary at different points in time. If the value of A is

missing for a particular tuple, it can only be computed

from the values of the attributes in X if there happens to be

another tuple in the relation with the same values for the

attributes in X. For an embedded calculated attribute B,

there must be a time-invariant function allowing the

calculation of the value of B at any time from the values of

the attributes it is dependent upon [7].

V. TJ-II REMOTE PARTICIPATION SYSTEM

CHARACTERISTICS

The TJ-II RPS is based on web servers as mentioned

above. This allows one to build a very scalable and

distributed environment, even avoiding direct

communication between users and data acquisition

systems (DAS). Such indirect communication adds

security to the system while also saving DAS resources.

Thus the DAS controlling computer can be entirely

devoted to data acquisition and analysis tasks, rather than

providing capabilities such as access control, database

support, or user interface. The TJ-II RPS authentication

and authorization system has to provide resources to

accomplish the signal and module. ownership

requirements for programming purposes [6]. All

authenticated users can access, in read-only mode, all

channel setups but only authorized users (signal owners)

can change parameters. Finally, the TJ-II RPS must

guarantee the uniqueness of signal location in order to

meet this general requirement of the TJ-II data acquisition

system figure 2.

From the TJ-II operation point of view, this is the main

process. Users can visualize all signal acquisition

parameters while signal owners can modify a channel

setup. The client tier for this process consists of web

pages. Several web pages, depending on the hardware

characteristics (sampling rates, memory, pre-trigger and

post trigger protocol and so on) of the digitizer to which

the signal is associated, provide user interface [8].

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5201 3

Fig 2: Multi-tier software architecture for programming

In the first stage, the acquisition cards available for the TJ-

II RPS will be two families of in-house VXI cards, PXI

6070E cards from National Instruments, PCIDAS 4020/12

cards and PCI-DAS 1602/16, both from Measurement

Computing. Over 1000 channels will be managed in this

way from the TJ-II remote participation system. In addition

to the hardware characteristics pages, others have been

developed in order to provide users with interfaces for

defining signal parameters such as amplifier gains,

calibration factors, or other experimental values. There is

no restriction on the number of parameters per signal, as

this information is stored in the TJ-II database, which also

provides a buffer for this data. Web pages devoted to

channel setup exchange typically 50 Kbytes between client

and middle tiers [5].

TJ-II operation can be easily followed through “TJ-II

virtual system.” A virtual system can be visualized as a

signal container. A user defines a virtual system through

the use of a name. The user “places” signals in the virtual

system and a web page provides a graphical user interface

that pro- vides a constant update of the status of the virtual

system when required.

VI. WORKLOAD TUNING STRATEGY

The SQL Tuning Advisor follows a statement-at-a-time

model. When analyzing a SQL statement from a workload,

the advisor focuses on each individual statement in

isolation and attempts to find the root cause of any

performance problems it might have. The four types of

analysis from part A are invoked independently for each

SQL statement, and any findings made are attached to the

relevant SQL statement. The statement-at-a-time

architecture is particularly suitable to the SQL Tuning

Advisor since its goal is to fix spot problems on a

production system, giving a DBA tools like the SQL

profile to fix one statement without impacting others.

Statement-at-a-time has the additional advantage that it

scales very easily to large workload sets. The advisor

avoids the potential disadvantages of this approach by

summarizing findings across the workload and caching the

results of key computations. When the advisor repeats

findings across statements, it presents them in a workload-

level summary to help DBAs fashion a high-level

understanding of the tuning results. Repeated work is

avoided by caching results of expensive work performed

for one SQL statement and re-using it for similar

statements later. A good example of this is the data

sampling performed by SQL profiling, where table

statistics are computed once and reused across statements.

As a component that requires detailed interactions with the

end user, a powerful reporting infrastructure and graphical

user interface (GUI) have always been essential pieces of

the SQL Tuning Advisor. The advisor provides a detailed

textual report to command-line users and an interactive

GUI in Oracle Enterprise Manager (OEM) where it gives a

clear explanation of its advice for each particular SQL

statement [9].

VII. CONCLUSION

Simplify SQL performance tuning; Oracle introduced the

SQL Tuning Advisor in 10g. It made many performance

issues much easier to fix, but was lacking an automation

framework: users still had to run the advisor manually

when performance problems happened and accept the

advisor’s recommendations. With the 11g release the

tuning advisor’s technology has been fully automated so

that some SQL performance problems can be fixed

automatically by the system. It provides safeguards to

guarantee that its tuning activities will not harm any

application workload. One natural question which arises is

whether the "two-dimensional union" is flexible enough to

handle the complex situations which arise in integrating

actual databases. We believe that its ability to integrate

relations which represent essentially the same type of

objects, even though they may have different attributes,

does provide a great deal of flexibility, but this has not yet

been demonstrated in the context of a real-world

application. This is a good question for further work.

REFERNCES

[1] G.D. Held, M.R. Stonebraker, and E. Wong, "INGRES – A
Relational Database System," Proc. AFIPS Nut. Computer Conf.,

Vol. 44, AFPS Press, Arlington, VA, 197.5, pp. 409-416..
[2] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, M. Ziauddin,

“Automatic SQL Tuning in Oracle 10g,” in VLDB pages 1098-

 ..2004 ,1109
[3] Al-Kahtani, M.A., Sandhu, R., 2004. Rule-Based RBAC with

Negative Authorization. Proc. 20th Annual Computer Security
Applications Conf., p.405-415. [Doi: 10.1109/ CSAC.2004.32].

[4] Bertino, E., Samarati, P., Jajodia, S., 1997. An extended

authorization model for relational database. IEEE Trans. Knowl.
Data Eng., 9(1):85-101. [doi:10.1109/69.567051]

[5] Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic

controller. II. Systems, Man and Cybernetics, IEEE Transactions on,

 .419-435 ,(2)20
[6] Ragot, J., & Lamotte, M. (1993). Fuzzy logic control. International

journal of systems science, 24(10), 1825-1848.
[7] Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P., 2004. Extending

Query Rewriting Techniques for Fine-Grained Access Control.

Proc. ACM SIGMOD Int. Conf. on Management of Data, p.551-

562. [doi:10.1145/1007568.1007631].
[8] Olson, L.E., Gunter, C.A., Cook, W.R., Winslett, M., 2009.

Implementing reflective access control in SQL. LNCS, 5645:17-32.

[Doi: 10.1007/978-3-642-03007-9_2]
[9] Kuznik, F., Virgone, J., & Roux, J. J. (2008). Energetic efficiency

of room wall containing PCM wallboard: A full-scale experimental

investigation. Energy and buildings, 40(2), 148-156.

